今天的課題是實分析 (Real Analysis)
********************************************************
在做實分析以前,我們先玩一個遊戲
我們先定義一些符號:
{α, β, γ, δ, ε, ζ, η, θ, ☻, ☼}
這些符號之間擁有一些奇怪的特性,我們可以使用一個符號★ 表示它們之間的關係
★這個符號,有著以下的特徵:
1. α★β = β★α .....................................................................Commutative
2. (α★β)★γ = α★(β★γ).......................................................Associative
3. 存在著一個符號叫 ☻ 會使得 α★☻ = α
4. 對於每一個 α 來說,我們定義一個符號叫♯,使得如果 α★β =☻,則 β = ♯α
此外,還存在著另外一個符號叫 ♥
♥這個符號,有著以下的特徵:
5. α♥β = β♥α........................................................................Commutative
6. (α♥β)♥γ = α♥(β♥γ)...........................................................Associative
7. 存在著一個符號叫 ☼ 會使得 α♥☼ = α
8. 對於每一個 α 來說,我們定義一個符號叫♭,使得如果 α♥β =☼,則 β = ♭α
最後,★與♥ 存在著一種關係:
9. (α★β)♥γ = (α♥γ)★(β♥γ)..................................................Distributive
********************************************************
然後,我們就開始玩遊戲嚕:
(a) 證明:☻★☻= ☻
答案:
☻★☻= ☻..........................................................................................(3)
(b) 證明:☻♥ α = ☻
答案:
☻
= (☻♥ α ) ★ ♯(☻♥ α )
= [ (☻★☻)♥ α ] ★ ♯(☻♥ α ) .............................................................(a)
= [ (☻♥ α ) ★ (☻♥ α ) ] ★ ♯(☻♥ α )..................................................(9)
= (☻♥ α ) ★ [ (☻♥ α ) ★ ♯(☻♥ α ) ] ................................................(2)
= (☻♥ α ) ★ ☻....................................................................................(4)
= (☻♥ α )..............................................................................................(3)
(c) 證明:(♯β)♥β = ♯(β♥β)
答案:
(♯β)♥β
= (♯β)♥β ★ ☻......................................................................................(3)
= (♯β)♥β ★ [ (β♥β) ★ ♯(β♥β) ]............................................................(4)
= [ (♯β)♥β ★ (β♥β) ] ★ ♯(β♥β)............................................................(2)
= { [(♯β)★β] ♥β } ★ ♯(β♥β).................................................................(9)
= (☻♥ β ) ★ ♯(β♥β)............................................................................(4)
= ☻★ ♯(β♥β).......................................................................................(b)
= ♯(β♥β) ★ ☻......................................................................................(1)
= ♯(β♥β)................................................................................................(3)
(d) 證明:(α★β)♥(α★(♯β)) = (α♥α)★(♯(β♥β))
答案:
(α★β)♥(α★(♯β))
= {α ♥ [α★(♯β)] }★ { β ♥ [α★(♯β)] } ................................................(9)
= { [α★(♯β)] ♥ α }★ { [α★(♯β)] ♥ β }.................................................(5)
= { [α♥α] ★ [α♥(♯β)] } ★ { [α♥β] ★ [(♯β)♥β] }..................................(9)
= [α♥α] ★ { [α♥(♯β)] ★ { [α♥β] ★ [(♯β)♥β)] } }.................................(2)
= [α♥α] ★ { { [α♥(♯β)] ★ [α♥β] } ★ [(♯β)♥β] }..................................(2)
= [α♥α] ★ { { [(♯β)♥α] ★ [β♥α] } ★ [(♯β)♥β] }..................................(5)
= [α♥α] ★ { { [(♯β)★β] ♥ α } ★ [(♯β)♥β] }.........................................(9)
= [α♥α] ★ { { [β★(♯β)] ♥ α } ★ [(♯β)♥β] }.........................................(5)
= [α♥α] ★ { { ☻♥ α } ★ [(♯β)♥β] }....................................................(4)
= [α♥α] ★ { ☻★ [(♯β)♥β] }................................................................(b)
= [α♥α] ★ { [(♯β)♥β] ★☻ }................................................................(1)
= [α♥α] ★ [(♯β)♥β]..............................................................................(3)
= (α♥α)★(♯(β♥β)).................................................................................(c)
********************************************************
好了,聰明的讀者您或許會發現,在做了一堆東西以後,我們所證明的,只不過是:
(x+y)*(x-y) = x^2 - y^2
沒有留言:
張貼留言